CTA imaging Uncategorized Venous venous aneurysm venous intervention

3D VR Images from CT Data Very Useful in Open Surgical Planning: Popliteal Venous Aneurysm


Patient is a middle aged man with history of DVT and PE who in preoperative workup for another operation was found to have a popliteal venous aneurysm affecting his right leg. Unlike the recently posted case (link) which was fusiform, this aneurysm was saccular (CT above, duplex below). Popliteal venous aneurysms have a high risk of pulmonary embolism because: they tend to form clot in areas of sluggish flow and once loaded with clot, will eject it when compressed during knee flexion.


When I perform open vascular surgery, I tend to get a CTA not just because it is minimally invasive and convenient, but because it gives important information for operative planning. The volume rendering function, which takes the 3 dimensional data set from a spiral CT scan, and creates voxels (3 dimensional pixels) of density information and creates stunning images such as the one featured on the current September 2016 issue of the Journal of Vascular Surgery. But these are not just pretty pictures.

In fact, I use these images to plan open surgery, even to the location of incisions. Vital structures are seen in 3D and injuries are avoided. Take for example the CT Venogram on the panel below. By adjusting the window level, you have first the venographic information showing the saccular popliteal venous aneurysm on the left panel, you can also see where it is in reference to the muscles in the popliteal fossa. The greater saphenous vein and varicose veins below are well seen.


By adjusting the level, subcutaneous structures are better seen including the small saphenous vein which could be harvested to create a patch or a panel graft from a posterior approach. A final adjustment of the window level on the right shows the skin, and I can now plan the curvilinear incision.

By changing the orientation, I can also recreate the surgeon’s eye view of the leg in the prone position (below).


And you can see how well it matches up to the actual operation shown below:

Intraop Photo.png

This was treated with plication of the saccular aneurysm and unlike the fusiform aneurysm, I did not sew over a mandrill (a large 24F foley) inserted through a transverse venotomy, but rather ran a Blalock type stitch under and over a clamp.


The several weeks postoperatively showed no further trace of the saccular aneurysm.


The volume rendering software grew out of the 3D gaming industry. The voxel data that paints flesh and bone on skeletons and costumes and weapons is far more complex than what is applied for the 3DVR packages that are available. The images shown for this post comes from TeraRecon/Aquarius, but they are also available as open source software from Osirix, Vitrea, and various software packages sold with CT scanners. While those that are tied to the scanners are often tied to dedicated workstations -limiting you to going to Radiology and taking over their workstation, many will work in the cloud for both the DICOM data and for virtual desktop access through mobile. Contrast is not necessary if the patient has kidney dysfunction -the vessels can be manually centerlined -ie. a line can be dropped in the center of the artery to illustrate its course when viewing the VR images.

I will plan the surgery while in the clinic with the patient, actually tracing out the incisions and dissections necessary to achieve success. It is a wonderful teaching tool for trainees. But most critically, it helps me imagine the operation and its successful completion.


Arteriovenous fistula after ankle infection –workup and treatment

The patient presented with complaint of right leg swelling and pain that became unbearable as the day progressed. He had had a prior bout of septic ankle joint which occurred after treatment of infected hardware in the other ankle. He did have an aspiration of his joint but no major surgery. His local specialist performed arteriography, found an arteriovenous fistula, and referred him after concluding that an endovascular repair was not possible.

On examination, he had dilated leg veins and a boggy, tender leg without chronic venous stasis changes. There was an audible bruit over the ankle where the fistula was identified. It would have been near the puncture site of an aspiration needle. CT scan showed the arteriovenous fistula along with chronic changes on the arterial and venous sides due to the increased flows.

This included relative dilatation of the anterior tibial artery and the outflow veins. One of the animal models of iliac aneurysm involves creating an arteriovenous fistula of the femoral artery at the groin of a rat –this was an arduous operation done under a microscope which was the final exam of a microsurgery course during my fellowship, but I digress. Arteries respond to perturbations of flow by dilatation, elongation (engendering tortuosity), and plaque formation. Two areas of naturally occurring elongation are the internal carotid artery and the external iliac artery –in both cases, it is sometimes necessary to straighten and cut out excess artery. A high number of patients with tortuous internal carotid arteries –those with kinks and loops, have aortic aneursms. In the case of the external iliac artery, this has been used in the past as conduit for infections of the common femoral artery.

He had the clinical triad for an arteriovenous fistula that persists and grows –trauma, inflammation, and good venous outflow. The pain was due to venous hypertension but I suspect some regional compartmental steal and pressure may be at play as well, but that’s hard to prove. It makes me think there may be a way to create AV fistulae for dialysis access using these principles.

The 3DVR imaging was very helpful in planning the operation, particularly the incision and exposure.


Is there an endovascular option? Probably, but why? What are the costs of coils and glues when a few clips and sutures will do? This patient did very well with ligation and division of the fistula. The real magic is our imaging and image processing capabilities.

CTA imaging PAD techniques training

Intuition Aquarius (TeraRecon) Trick -Applying Virtual Reality to Operative Planning

I have used many different flavors of image post processing software including Osiris, Vitrea, and now Aquarius, aka TeraRecon. But I notice that outside of endovascular planning, people rarely use the virtual 3D reconstructed images (the pretty pictures) for anything other than posting images for publication in JVS, and even there I think we have reached saturation.

I have found 3D reconstruction to be especially useful for open surgical planning, and that is by doing two things. First, on viewing the 3DVR data, I reorient and center on the surgeon’s perspective, using left button to rotate the picture around the zero at the center of the screen, and the right mouse button to grab the whole image and recenter as necessary.

Window Leveling.001
Surgeon’s eye OR view

I then window-level in tissue density -this is done by pressing both the right and left mouse buttons, but you can choose this off the menu.

Window Leveling.002

I can plan the incisions and exposures from any angle -in this case, I can see the saphenous vein and its relative proximity to the CFA to perform an in site bypass to the AK POP. And I see the loci of the tributaries that I may need to ligate.

Window Leveling.004

This is a powerful tool that is often overlooked.